Enhancement and recognition of noisy speech within an autoregressive hidden Markov model framework using noise estimates from the noisy signal

نویسندگان

  • Beth Logan
  • Anthony J. Robinson
چکیده

This paper describes a new algorithm to enhance and recognise noisy speech when only the noisy signal is available. The system uses autoregressive hidden Markov models (HMMs) to model the clean speech and noise and combines these to form a model for the noisy speech. The probability framework developed is then used to reestimate the noise models from the corrupted speech waveform and the process is repeated. Enhancement is performed using the Wiener lters formed from the nal clean speech models and noise estimates. Results are presented for additive stationary Gaussian and coloured noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise Estimation for Enhancement and Recognition within an Autoregressive Hidden-markov-model Framework

This paper describes a new algorithm to enhance and recognise noisy speech when only the noisy signal is available. The system uses autoregressive hidden Markov models (HMMs) to model the clean speech and noise and combines these to form a model for the noisy speech. The combined model is used to determine the likelihood of each observation being just noise. These likelihoods are used to weight...

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Speech recognition and enhancement by a nonstationary AR HMM with gain adaptation under unknown noise

In this paper, a gain-adapted speech recognition in unknown noise is developed in time domain. The noise is assumed to be the colored noise. The nonstationary autoregressive (NAR) hidden markov model (HMM) used to model clean speeches, The nonstationary AR is modeled by polynomial functions with a linear combination of A4 known basis functions. Enhancement using multiple Kalman filters is perfo...

متن کامل

On the application of hidden Markov models for enhancing noisy speech

w e ppose a new algorithm for enhancing noisy speech which have been degraded by statistically independent additive noise. The al p rithm is based upon modeling the clean speech as a hidden Markov process with mixtures of Gaussian autoregressive (AR) output processes, and the noise process as a sequence of stationary, statistically independent, Gaussian AR vectors. The parameter sets of the mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997